platinum has been measured at low mercury pressures. It has been found to approach unity as the temperature difference between the filament and wall approaches zero and to fall off about 0.08 for each $100^{\circ}$ of this temperature difference. The data obtained in the measurements allow a calcu-
lation of the heat of vaporization of mercury. It is suggested that the method might be developed into a precise and convenient one of wide applicability for determining heats of vaporization and sublimation.
Columbia, Missouri
Recerved June 25, 1942
[Contrrbution from Physical Chemistry Laboratory, Department of Chemistry and Chemical Engineering, Case School of Applied Science]

## Equation of State for Gases at High Pressures Involving Only Critical Constants

By Samuel H. Maron and David Turnbull

Several years ago F. G. Keyes, ${ }^{1}$ starting with an equation of state involving $P V$ as a linear function of pressure, deduced generalized equations for polar and non-polar gases at low pressures. More recently the authors, ${ }^{2}$ using the principle of corresponding states, presented a method for estimating the Beattie-Bridgeman constants of any gas from those of a reference gas. The only supplementary data required were the critical pressures and temperatures of a gas and of the reference, for which nitrogen was taken. The success thus attained suggested that the pressure range over which calculations could be made could be extended appreciably provided an equation of state were available covering a wider range of pressures than that of Beattie-Bridgeman. Consequently an empirical equation of state for nitrogen was deduced, covering the temperature range of -70 to $600^{\circ}$, and for pressures up to 1000 atmospheres. ${ }^{3}$ The purpose of this paper is to show how this equation for nitrogen may be extended to other gases, and to present evidence for the validity of such an extension.

## Derivation of Equation of State

The nitrogen compressibility data within the temperature and pressure ranges specified are represented with good reproducibility by the equation, ${ }^{3}$

$$
\begin{equation*}
P V=R T+\alpha_{1}^{\prime} P+\alpha_{2}^{\prime} P^{2}+\alpha_{3}^{\prime} P^{3}+\alpha_{4}^{\prime} P^{4} \tag{1}
\end{equation*}
$$

where the virial coefficients $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}, \alpha_{4}^{\prime}$ are functions of the temperature only, and are given by

$$
\begin{align*}
& \alpha_{1}^{\prime}=a_{1}+\frac{a_{2}}{T}+\frac{a_{3}}{T^{3}}  \tag{2}\\
& \alpha_{2}^{\prime}=\frac{b_{1}}{T^{2}}+\frac{b_{2}}{T^{4}}+\frac{b_{3}}{T^{6}} \tag{3}
\end{align*}
$$

[^0]\[

$$
\begin{align*}
& \alpha_{s}^{\prime}=\frac{c_{1}}{T^{2}}+\frac{c_{2}}{T^{4}}+\frac{c_{3}}{T^{6}}  \tag{4}\\
& \alpha_{4}^{\prime}=\frac{d_{1}}{T^{2}}+\frac{d_{2}}{T^{4}}+\frac{d_{3}}{T^{6}} \tag{5}
\end{align*}
$$
\]

$a_{1}, a_{2}, \ldots, b_{1}, b_{2}, \ldots$, etc., are constants independent of temperature and pressure. From (1) the expression for the compressibility coefficient, $Z$, of nitrogen follows as

$$
\begin{array}{r}
Z=\frac{P V}{R T}=1+\frac{\alpha_{1}^{\prime} P}{R T}+\frac{\alpha_{2}^{\prime} P^{2}}{R T}+\frac{\alpha_{3}^{\prime} P^{3}}{R T}+\frac{\alpha_{4}^{\prime} P^{4}}{R T}=1+ \\
{\left[\frac{\alpha_{1}^{\prime} P_{6}^{\prime}}{R T_{\mathrm{c}}^{\prime}}\right] \frac{P_{\mathrm{r}}}{T_{\mathrm{r}}}+\left[\frac{\alpha_{2}^{\prime}\left(P_{\mathrm{c}}^{\prime}\right)^{2}}{R T_{\mathrm{o}}^{\prime}}\right] \frac{P_{\mathrm{r}}^{2}}{T_{\mathrm{r}}}+\left[\frac{\alpha_{3}^{\prime}\left(P_{\mathrm{c}}^{\prime}\right)^{3}}{R T_{\mathrm{c}}^{\prime}}\right] \frac{P_{\mathrm{r}}^{3}}{T_{\mathrm{r}}^{3}}+} \\
{\left[\frac{\alpha_{4}^{\prime}\left(P_{\mathrm{c}}^{\prime}\right)^{4}}{R T_{\mathrm{c}}^{\prime}}\right] \frac{P_{\mathrm{r}}^{4}}{T_{\mathrm{r}}}} \tag{6}
\end{array}
$$

where the substitutions $T=T_{\mathrm{c}}^{\prime} T_{\mathrm{r}}$ and $P=P_{\mathrm{c}}^{\prime} P_{\mathrm{r}}$ have been made for $T$ and $P . \quad T_{\mathrm{c}}^{\prime}$ and $P_{\mathrm{c}}^{\prime}$ are the critical constants of nitrogen, while $T_{\mathrm{r}}$ and $P_{\mathrm{r}}$ are the reduced temperature and pressure corresponding to $T$ and $P$.

Now, the indications of various attempts at generalized correlation of compressibilities of gases ${ }^{4,5}$ are that $Z$ is, to a fairly close approximation, a function of $T_{\mathrm{r}}$ and $P_{\mathrm{r}}$ only. If this statement be accepted provisionally, then it must follow that at any given values of $T_{\mathrm{r}}$ and $P_{\mathrm{r}} Z$ is the same for different gases, and hence the quantities in brackets in equation (6) must have the same values for all gases obeying the principle of corresponding states. Applying this identity condition to the first quantity in brackets in (6), we obtain for the relation between the primed quantities for nitrogen and the unprimed quantities for any other gas

$$
\begin{align*}
\frac{\alpha_{1} P_{0}}{T_{0}} & =\frac{\alpha_{1}^{\prime} P_{0}^{\prime}}{T_{0}^{\prime}} \\
\alpha_{1} & =\left(\frac{\alpha_{1}^{\prime} P_{0}^{\prime}}{T_{0}^{\prime}}\right) \frac{T_{0}}{\bar{P}_{0}} \tag{7}
\end{align*}
$$

[^1]Substituting now $T=T_{\mathrm{c}}^{\prime} T_{\mathrm{r}}$ for $T$ in (2), and inserting the result in (7), we find for $\alpha_{1}$

$$
\begin{align*}
\alpha_{1} & =\frac{T_{\mathrm{c}}}{P_{\mathrm{c}}}\left\{\left[\frac{a_{1} P_{\mathrm{c}}^{\prime}}{T_{\mathrm{o}}^{\prime}}\right]+\left[\frac{a_{2} P_{\mathrm{c}}^{\prime}}{\left(T_{\mathrm{c}}^{\prime}\right)^{2}}\right] \frac{1}{T_{r}}+\left[\frac{a_{3} P_{\mathrm{c}}^{\prime}}{\left(T_{\mathrm{c}}^{\prime}\right)^{4}}\right] \frac{1}{T_{\mathrm{r}}^{3}}\right\} \\
& =\frac{T_{\mathrm{c}}}{P_{\mathrm{c}}}\left[\beta_{1}+\frac{\beta_{\mathrm{a}}}{T_{\mathrm{r}}}+\frac{\beta_{3}}{T_{\mathrm{r}}^{3}}\right] \tag{8}
\end{align*}
$$

where $\beta_{1}, \beta_{2}$ and $\beta_{3}$ are constants given by the quantities in brackets involving the $a$ 's and the critical pressure and temperature for nitrogen.

By extending this procedure to the other $\alpha$ 's, it can readily be shown that

$$
\begin{aligned}
& \alpha_{2}=\frac{T_{\mathrm{c}}}{\bar{l}_{\mathrm{c}}^{\prime}}{ }^{2} ;\left[\frac{b_{1}\left(P_{\mathrm{c}}^{\prime}\right)^{2}}{\left(T_{\mathrm{c}}^{\prime}\right)^{3}}\right] \frac{1}{T_{\mathrm{r}}^{2}}+\left[\frac{b_{2}\left(P_{\mathrm{o}}^{\prime}\right)^{2}}{\left(T_{\mathrm{c}}^{\prime}\right)^{5}}\right] \frac{1}{T_{\mathrm{r}}^{4}}+ \\
& \left.\left[\frac{b_{3}\left(P_{c}^{\prime}\right)^{\prime}}{\left(T_{!}^{\prime}\right)^{7}}\right] \frac{1}{T_{\mathrm{r}}^{6}}\right\} \\
& =\frac{T_{\mathrm{c}}}{P_{\mathrm{c}}{ }^{2}}\left[\frac{\beta_{4}}{T_{\mathrm{r}}{ }^{2}}+\frac{\beta_{\mathrm{5}}}{T_{\mathrm{T}}{ }^{4}}+\frac{\beta_{6}}{T_{\mathrm{r}}{ }^{6}}\right] \\
& \alpha_{4}=\frac{T_{\mathrm{c}}}{P_{\mathrm{e}}{ }^{3}}\left\{\left[\frac{c_{1}\left(P_{0}^{\prime}\right)^{3}}{\left(T_{\mathrm{c}}^{\prime}\right)^{3}}\right] \frac{1}{T_{\mathrm{r}}{ }^{2}}+\left[\frac{c_{2}\left(P_{0}^{\prime}\right)^{3}}{\left(T_{0}^{\prime}\right)^{3}}\right] \frac{1}{T_{\mathrm{r}}^{4}}+\right. \\
& \left.\left[\frac{c_{8}\left(P_{\mathrm{c}}^{\prime}\right)^{3}}{\left(T_{\mathrm{e}}^{\prime}\right)^{7}}\right] \frac{1}{T_{\mathrm{g}}^{6}}\right\} \\
& =\frac{T_{\mathrm{c}}}{P_{\mathrm{c}}{ }^{3}}\left[\frac{\beta_{\mathrm{Y}}}{T_{\mathrm{r}}{ }^{4}}+\frac{\beta_{\mathrm{B}}}{T_{\mathrm{r}^{4}}{ }^{4}}+\frac{\beta_{9}}{T_{\mathrm{r}}{ }^{6}}\right] \\
& \alpha_{4}=\frac{T_{\mathrm{c}}}{P_{\mathrm{c}}{ }^{4}}\left\{\left[\frac{d_{1}\left(P_{\mathrm{c}}^{\prime}\right)^{4}}{\left(T_{0}^{\prime}\right)^{3}}\right] \frac{1}{T_{\mathrm{r}}{ }^{2}}+\left[\frac{d_{2}\left(P_{\mathrm{c}}^{\prime}\right)^{4}}{\left(T_{0}^{\prime}\right)^{5}}\right] \frac{1}{T_{\mathrm{r}}{ }^{4}}+\right. \\
& \left.\left[\frac{d_{3}\left(P_{c}^{c}\right)^{4}}{\left(T_{\mathrm{c}}^{\prime}\right)^{7}}\right] \frac{1}{T_{\mathrm{r}}{ }^{\mathrm{f}}}\right\rangle \\
& =\frac{T_{\mathrm{c}}}{P_{\mathrm{c}}{ }^{4}}\left[\frac{\beta_{10}}{T_{\mathrm{r}}{ }^{2}}+\frac{\beta_{11}}{T_{\mathrm{r}}{ }^{4}}+\frac{\beta_{12}}{T_{\mathrm{r}}{ }^{6}}\right] \\
& \text { (11) }
\end{aligned}
$$

If the above considerations are valid, equations (8), (9), (10), and (11) should give the $\alpha$ 's for any gas in terms of the constants for nitrogen as they appear in the $\beta$ s, and the critical pressure and temperature of the gas in question. These $\alpha$ 's, then, when substituted in equation (1) for the $\alpha$ 's for nitrogen should permit a calculation of the compressibility of various gases from a knowledge of their critical constants and the $\beta$ 's for nitrogen. In other words, the equations for the $\alpha$ 's should give the virials of any gas whose $P V$ behavior as a function of $P$ is represented by equation (1).

## Results and Discussion

Table I gives the $\beta$ values calculated from the constants of equations (2) to (5) as published, ${ }^{3}$ and from the critical constants of nitrogen, $T_{\mathrm{c}}{ }^{\prime}=$ $126.0^{\circ} \mathrm{K}$. and $P_{\mathrm{c}}^{\prime}=33.5$ atmospheres. From these $\beta^{\prime}$ 's and the appropriate critical constants $\alpha$ 's were determined for a number of gases at various reduced temperatures, and these, in turn, were employed with equation (1) to estimate the volumes of these gases at various temperatures and pressures. In line with Newton, ${ }^{6}$ the critical

[^2]Table I
$\beta$ Values for Equations (8) to (12) ${ }^{a}$

| $\beta_{1}=1.01961 \times 10^{-2}$ | $\beta_{7}=-1.2516 \times 10^{-4}$ |
| :--- | :--- |
| $\beta_{2}=-2.1420 \times 10^{-2}$ | $\beta_{8}=4.6408 \times 10^{-4}$ |
| $\beta_{3}=-3.2548 \times 10^{-2}$ | $\beta_{9}=-1.5573 \times 10^{-3}$ |
| $\beta_{4}=3.6991 \times 10^{-3}$ | $\beta_{10}=1.7019 \times 10^{-6}$ |
| $\beta_{5}=-4.3022 \times 10^{-3}$ | $\beta_{11}=-1.1221 \times 10^{-5}$ |
| $\beta_{6}=1.8289 \times 10^{-2}$ | $\beta_{12}=3.2830 \times 10^{-8}$ |

${ }^{\text {a }}$ These constants are for $T^{*}$ in liters, $P$ in atmospheres. and $T=\left(t^{\circ} \mathrm{C} .+273.18\right)^{\circ} \mathrm{K}$.
temperatures for hydrogen and helium were taken as $T_{\mathrm{c}}+8$, with the critical pressures as $P_{\mathrm{c}}+8$, since these definitions for the critical constants were found necessary to generalize the thermodynamic behavior of these gases. The results thus obtained with nine gases are summarized in Table II. Column 1 gives the temperature in ${ }^{\circ} \mathrm{C}$., column 2 the corresponding reduced temperature, while column 3 the maximum pressure to which the calculations were extended. Finally, columns 4 and 5 give, respectively, the maximum and average percentage deviation of the volumes calculated in this manner from the observed.

Before considering these results it should be pointed out that the equation for nitrogen, from which the more general equation presented here is derived, was set up from data which cover the reduced temperature interval $1.61-7$ and up to $P_{\mathrm{r}}=30$. Therefore, in extending this equation through the principle of corresponding states to other gases, it is to be anticipated that the proposed equation will be strictly applicable over the same reduced temperature and pressure interval. Actually it has been found that the equation may be extended to $T_{\mathrm{r}}$ values lower than 1.6 although in such extension the maximum and average deviations which appear are higher than within the specified interval.

The results in Table II indicate that within the range of equations, compressibilities of various gases can be calculated with a maximum deviation no greater than about $4 \%$, and an average deviation less than $2 \%$, up to pressures of 1000 atmospheres in many instances. The reason for not extending all calculations to this pressure is lack of data for comparison. However, in the case of helium, where data are available, the limitation is the high reduced pressure, which is already 58.5 at 600 atmospheres. Any attempts to carry the calculations beyond this large $P_{\mathrm{r}}$ extrapolation result in an appreciable decrease in concordance with observed data.

Table II
Comparison of Calculated and Observed Volumes for Some Gases ${ }^{a}$

| c. | $T_{\text {r }}$ | Max. press., | \% Dev. | $\begin{aligned} & \pm \text { Dev } \\ & \text { avy. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Hydrogen- $T_{\mathrm{c}}=41.28, P_{0}=20.8$ |  |  |  |  |
| -175 | 2.378 | 75 | -0.55 | 0.22 |
| -100 | 4.195 | 100 | 0.10 | . 06 |
| $-50$ | 5.406 | 1000 | 2.00 | . 60 |
| 0 | 6.617 | 1000 | 2.10 | . 33 |
| 100 | 9.040 | 1000 | 2.55 | . 36 |
| 300 | 13.885 | 1000 | 1.30 | . 24 |
| 500 | 18.730 | 1000 | 2.43 | 53 |


| Methane- $T_{\mathrm{c}}=190.68, P_{\mathrm{c}}=45.8$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1.432 | 1000 | 7.12 | 3.60 |
| 25 | 1.563 | 1000 | 3.70 | 1.71 |
| 50 | 1.694 | 1000 | 2.89 | 1.21 |
| 100 | 1.957 | 1000 | 3.28 | 1.02 |
| 150 | 2.219 | 1000 | 3.14 | 1.32 |
| 200 | 2.481 | 1000 | 2.99 | 1.42 |
| Helium- $T_{c}=13.28, P_{0}=10.26$ |  |  |  |  |
| - 70 | 15.299 | 600 | 1.84 | 0.70 |
| 0 | 20.570 | 600 | 2.12 | 0.88 |
| 200 | 35.631 | 600 | 2.64 | 1.46 |

Propane- $T_{\mathrm{c}}=369.99, P_{\mathrm{c}}=42.01$

| 225 | 1.346 | 104.2 | 4.83 | 2.17 |
| :--- | :--- | :--- | :--- | :--- |
| 250 | 1.414 | 266.06 | 3.13 | 1.53 |
| 275 | 1.481 | 303.03 | 1.90 | 0.79 |

Ethane- $T_{\mathrm{c}}=305.28, P_{\mathrm{o}}=48.8$

| 125 | 1.304 | 111.46 | 9.45 | 4.05 |
| :--- | :--- | :--- | :--- | :--- |
| 175 | 1.468 | 222.44 | 3.05 | 0.88 |
| 225 | 1.631 | 311.09 | 3.10 | 1.12 |
| 250 | 1.713 | 345.38 | 2.99 | 1.17 |
| 275 | 1.795 | 345.30 | 2.32 | 1.63 |

Carbon Dioxide- $T_{\mathrm{c}}=304.28, P_{\mathrm{o}}=73.0$

| 137 | 1.348 | 225 | 4.85 | 2.01 |
| ---: | ---: | ---: | ---: | ---: |
| 198 | 1.548 | 1000 | 4.35 | 2.30 |
| 258 | 1.745 | 400 | -2.91 | 1.18 |

Nitric Oxide- $T_{\mathrm{c}}=179.18, P_{\mathrm{c}}=65$
$\begin{array}{lllll}9 & 1.574 & 160 & 3.27 & 1.80\end{array}$
Ethylene一 $T_{0}=282.88, P_{0}=50.9$

| 137.5 | 1.451 | 500 | 3.13 | 1.43 |
| :--- | :--- | :--- | :--- | :--- |
| 198.5 | 1.667 | 900 | 2.82 | 1.24 |


| Oxygen- $T_{c}=154.38, P_{c}=49.7$ |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: |
| 0 | 1.77 | 1000 | 2.30 | 0.85 |
| 99.5 | 2.41 | 1000 | 1.10 | 0.41 |
| 199.5 | 3.06 | 900 | 2.10 | 1.14 |


| Carbon Monoxide— $T_{\mathrm{o}}=134.18, P_{\mathrm{c}}=35.0$ |  |  |  |  |
| ---: | :---: | ---: | :---: | ---: |
| -70 | 1.51 | 800 | 4.4 | 1.75 |
| -50 | 1.66 | 1000 | 4.2 | 1.75 |
| -25 | 1.85 | 1000 | 2.9 | 1.18 |
| 0 | 2.04 | 1000 | 3.2 | 0.86 |
| 100 | 2.78 | 1000 | 1.0 | .27 |
| 200 | 3.53 | 1000 | 1.1 | .52 |

[^3]Kvalnes and Gaddy, ibid., 53, 394 (1931); helium—Wiebe, Gaddy and Heins, ibid., 53, 1721 (1931); propaneBeattie, Kay and Kaminsky, ibid., 59, 1589 (1937); ethane-Beattie, Hadlock and Poffenberger, J. Chem. Physics, 3, 93 (1935); carbon dioxide-Amagat, Ann. chim. phys., 29, 68 (1893); nitric oxide-Briner, Biedermann and Rother, Helv. chim. acta, 8, 923 (1925); ethylene -Amagat, Ann. chim. phys., 29, 68 (1893); oxygen-ibid.; carbon monoxide-Bartlett, Hetherington, Kvalnes and Tremearne, This Journal, 52, 1374 (1930).

The results for hydrogen and helium indicate that the equation is suitable for extrapolation to values of $T_{\mathrm{r}}$ much higher than seven. In fact, the agreement for hydrogen at $T_{\mathrm{r}}=18.7$ and helium at $T_{\mathrm{r}}=35.6$ is not very much worse than at the lower $T_{\mathrm{r}}$ 's. On the other hand, the calculations do indicate that extrapolation to values of $T_{\mathrm{r}}$ lower than 1.6 cannot be made as freely. With some sacrifice in accuracy the equation may be applied to $T_{\mathrm{r}}$ values as low as 1.3, although in such cases it is found necessary to decrease the pressure range to be covered. All things considered, it does not seem advisable to recommend the equation for its full pressure range below $T_{r}$ $=1.55$. At $T_{\mathrm{r}}=1.3$ the equation should be used only up to pressures of 100 atmospheres, with progressive increase in pressure range up to $P_{\mathrm{r}}=30$ as $T_{\mathrm{r}}$ approaches 1.55. Above $T_{\mathrm{r}}=1.55$ the equation seems to hold very well even at pressures considerably higher than the reduced pressure range for which the original nitrogen equation was deduced.

To show the superiority of the equation proposed here over a simple equation of state such as van der Waals, Table III gives a comparison of $P V$ 's observed and calculated by means of the two equations. Throughout the equation proposed here reproduces the observed compressibility data with a much higher fidelity than does the van der Waals equation. Further, when extended to pressures beyond the upper limits given in the table the van der Waals equation gives deviations which are above $15 \%$ and which reach $200-300 \%$ as the pressures approach 1000 atmospheres, whereas the equation of this paper still reproduces the data within a few per cent. A further comparison of the present equation with those of van der Waals, Dieterici, and Berthelot with data on hydrogen and oxygen at $0^{\circ 7}$ also shows that up to 1000 atmospheres our equation reproduces much more satisfactorily the data for these gases than do the other equations.

[^4]Table III

| Gas | Comparison of Observed and Calculated PV's |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pressure range. ${ }^{a}$ atm. | Reduced temp., $T_{T}$ | $P V$ van der \% Max. dev. | Waals <br> \% Av. dev. | $\begin{array}{r} P V \\ \% \text { Max. de } \end{array}$ | per <br> \% Av. dev. |
| Methane | 30-300 | 1.694 | 7.67 | 3.66 | 2.14 | 0.96 |
| Ethane | 38.64-311.09 | 1.631 | $-8.43$ | 4.81 | $-3.10$ | 1.12 |
| Propane | 41.23-303.03 | 1.481 | 14.05 | 6.07 | -1.90 | 0.79 |
| Ethylene | 50-300 | 1.667 | - 6.44 | 4.10 | $-1.57$ | 0.61 |
| Carbon monoxide | 25-200 | 1.663 | $-7.16$ | 4.54 | $-2.57$ | 0.90 |
| Carbon dioxide | 75-500 | 1.548 | 11.33 | 6.26 | -3.64 | 2.17 |

${ }^{4}$ Above the upper limits of pressure indicated the van der Waals equation gives deviations which are $15 \%$ or higher, and which reach $200-300 \%$ at pressures approaching 1000 atmospheres.

From the equations given in this paper it is readily possible to derive a generalized equation for the compressibility coefficients of gases obeying the principle of corresponding states. If the values of the $\alpha$ 's given by equations (8) to (11) be substituted into equation (1), and $Z$ solved for, the result is

$$
\begin{array}{r}
Z=1+\left[\frac{\beta_{1}}{T_{\mathrm{r}}}+\frac{\beta_{2}}{T_{\mathrm{r}}{ }^{2}}+\frac{\beta_{3}}{T_{\mathrm{r}}{ }^{4}}\right] \frac{P_{\mathrm{r}}}{R}+\left[\frac{\beta_{4}}{T_{\mathrm{r}}{ }^{3}}+\frac{\beta_{3}}{T_{\mathrm{r}}{ }^{5}}+\right. \\
\left.\frac{\beta_{\mathrm{B}}}{T_{\mathrm{r}}{ }^{7}}\right] \frac{P_{\mathrm{r}}{ }^{2}}{R}+\left[\frac{\beta_{7}}{T_{\mathrm{r}}{ }^{3}}+\frac{\beta_{8}}{T_{\mathrm{r}}{ }^{5}}+\frac{\beta_{\mathrm{g}}}{T_{\mathrm{r}}{ }^{7}}\right] \frac{P_{\mathrm{r}}{ }^{3}}{R}+\left[\frac{\beta_{10}}{T_{\mathrm{r}}{ }^{3}}+\right. \\
\left.\frac{\beta_{11}}{T_{\mathrm{r}}{ }^{5}}+\frac{\beta_{19}}{T_{\mathrm{r}}{ }^{7}}\right] \frac{P_{\mathrm{r}}^{4}}{R} \tag{12}
\end{array}
$$

This equation should reproduce the generalized compressibility coefficient curves deduced empirically by various authors within the ranges specified. That it will do so is evidenced by the comparisons of calculated and observed volumes given in this paper.

## Summary

1. Employing the principle of corresponding states, an equation of state for gases is deduced requiring only the critical temperature and pres. sure of a gas.
2. The equation is shown to be applicable to pressures as high as 1000 atmospheres and reduced temperatures of $T_{\mathrm{r}}=1.55$ and above.
3. Below $T_{r}=1.55$ the equation proposed is applicable down to $T_{\mathrm{r}}=1.30$ provided the pressure interval covered is reduced to 100 atmospheres at the lower temperature.
4. A comparison of the proposed equation with several other common equations of state shows the present equation to be superior to these.
5. A generalized equation for compressibility coefficients of gases is deduced.
Cleveland, Ohio
Received June 11, 1942
[Contribution from the Morley Chemical Laboratory, Western Reserve University]
Systems with Boron Trifluoride ${ }^{1}$

By Harold Simmons Booth and Donald Ray Martin

The boron atom of boron trifluoride has been found to be an acceptor to form a large number of coördinate compounds. The number of donor atoms has been found so far to be quite small, being confined to the seven elements carbon, nitrogen, oxygen, fluorine, phosphorus, sulfur and argon.

One of the best procedures for the identification of these coördinate compounds is thermal analysis, particularly as applied to liquefied gases. The object of the present investigation was to extend our knowledge of the coördinate compounds of boron

[^5]trifluoride and various gases by means of therma analysis.

## Apparatus and Procedure

The apparatus shown in Fig. 1 is similar in principle and operation to that described in detail by Germann and Booth, ${ }^{2}$ save for the following features.

1. Boron trifluoride ${ }^{3}$ from the cylinder $B$ was purified by fractional distillation in the fractionating column ${ }^{4}$ LH and stored in ampoule $\mathrm{T}_{2}$ separated by the mercury cut-off MC to prevent contamination from stopcock grease or from leakage.
[^6]
[^0]:    (1) Keyes, This Journal, 60, 1761 (1938).
    (2) Maron and Turnbull, Ind. Eng. Chem., 88, 408 (1941).
    (3) Maron and Turnbull, Ters Joumnal, 64, 44 (1942).

[^1]:    (4) Dodge, Ind. Ens. Chem., 24, 1353 (1932).
    (5) Lewia, ibid., 28, 257 (1036).

[^2]:    

[^3]:    ${ }^{\text {a }}$ Sources of $P-V-T$ data: hydrogen-Otto and Holborn, Z. Physik, 33, 1 (1925); Bartlett, Cupples and Tremearne, This Journal, 50, 1275 (1928); methane-

[^4]:    (7) Maron and Turabull, Ind. Eng. Chem., 34, 544 (1942).

[^5]:    (1) From a part of a thesis submitted by Donald Ray Martin to the Graduate Faculty of Western Reserve University, May, 1941, in partial fulfillmant of the requiraments for the degree of Dostor of philonophy.

[^6]:    (2) Germann and Booth, J. Phys, Chem., 30, 369 (1926).
    (3) Obtained through the kindness of the Harshaw Chemical Company.
    (4) Booth nud Bozarth, Ind. Eng. Chem., 99, 470 (1937).

